Year 9

 Knowledge

 Knowledge

 Organiser

 Organiser}

YEAR 9 - REASONING WITH NUMBER... Numbers

Keywords

What do I need to be able to do?
I By the end of this unit you should be able to:
I- Identify integers, real and rational numbers
I- Work with directed number

- Solve problems with number
- Find HCF/ LCM
- add/ Subtract fractions
- Mutiply/ Divide fractions

I- Write numbers in standard form

Integer: a whole number that is positive or negative
Rational: a number that can be made by dividing two integers
Irrational: a number that cannot be made by dividing two integers
Inverse operation the operation that reverses the action
Quotient: the result of a division
Product: the result of a muttiplication
Muttiples: found by multiplying any number by positive integers
Factor: integers that muttiply together to get another number

Integers, real and rational numbers
In
I Rational - root word: ratio
Real numbers: $\frac{2}{3}$ stems from $2: 1 \frac{2}{3}$ of the whole)
lrrational numbers: $\sqrt{2}$ the solution is a decimal that
never ends and does not repeat

The square root of a negative is not a real number and cannot be found

IIddition/ Subtraction of fractions \mathbb{R}

Standard form R

$6 \times 10^{5}+8 \times 10^{5}$	$\left(1.5 \times 10^{5}\right) \div\left(0.3 \times 10^{3}\right)$
$=600000+800000$	$15 \div 0.3 \times 10^{5} \div 10^{3}$
$=1400000$	$=5 \times 10^{2}$
$=1.4 \times 10^{5}$	

YEAR 9 - REASONING WITH NUMBER... Using Percentages

Keywords

Percent: parts per 100 - written using the 1 symbol
Decimal: a number in our base 10 number system. Numbers to the right of the decimal place are called decimals.
Fraction: a fraction represents how many parts of a whole value you have.
Equivalent: of equal value.
I Reduce: to make smaller in value.
Growth: to increase/ to grow.
Integer: whole number, can be positive, negative or zero.
Invest: use money with the goal of it increasing in value over time (usually in a bank).
I Multiplier: the number you are multiplying by.
I Profit: the income take away any expenses/ costs.

I - Use FDP equivalence
I Calculate percentage increase and decrease

Express percentage change

Solve reverse percentage problems
Solve percentage problems (calculator and non calculator problems)

Percentage $100 \%=a$ whole $=100$ hundredths

11 Converting FDP R

One hundredth (one whole spit i into 100 equal parts)

ones	tenths	hundredths
	\bullet	

Be careful of recurring decimals
eg $\quad 1=0.3333333$

$100 \%+12 \%=112 \%$
Multiplier

$1.00-0.58=0.42 \longleftarrow$ Less than 1

$1.00+0.12=1.12 \longleftarrow$ More than 1 I

-=-=-=-=-===-」

Reverse Percentages

Original Number (100%)

84
$140 \%=84$
$10 \%-6$
$100 \%=60$

Try to scale down to 10% or I\% and then scale back up to 100%

Original Number (100%)

Percentage change R

Difference in values Original value

100\%

Percentage profit
$\begin{gathered}\text { Money made (profit } \\ \text { value) }\end{gathered} \rightarrow \frac{36000}{180000} \times 100=20 \%$

YEAR 9 - REASONING WITH NUMBER.

What do I need to be able to do?

By the end of this unit you should be able to:

- Sove problems with bills and bank
statements
I Calculate simple interest
I - Calculate compound interest
- Calcuate wages and taxes
- Sove problems with exchange rates
- Solve unit pricing problems

Keywords

Credit: money being placed into a bank account
Debit: money that leaves a bank account
Balance: the amount of money in a bank account
Expense: a cost/ outgoing
Deposit: an intial payment (often a way of securing an item you will later pay for)
Mutipier: a number yov are mutipling by (Mutiplier more than $1=$ increasing, less than $1=$ decreasing)
Per Onnum: each year
Currency: the type of money a country uses
Unitary: one - the cost of one

Bils and Bank Statements

Bills - tell you the amount items cost and can show how much money you need to pay Some can include a total Look for different units (Is it in pence or pounds)

Menu	Price
Milk	89 p
Tea	$£ 1.50$

Bank Statements

I Bank statement can have negative balances if the money
spent is higher than the money coming into the account

Date	Description	Credit	Debit	Balance
I I h Sept	Salary	$£ 1500$		$£ 1500$
$19^{\text {hn }}$ Sept	Mortgage		$£ 600$	$£ 900$
I Sth Setp	Bday Money	$£ 15$		$£ 915$

$$
\frac{100 \times 30 \times 4}{100}=£ 120 \quad \begin{aligned}
& \text { This account earned } £ 120 \text { interest } \\
& \text { at the end of year } 4 \text { they have } £ 220
\end{aligned}
$$

IVave added Tax (VaT)

vaT is payable to the govermment by a business in the UK VaT is 20% and added to items that are bought.

Essential items such as food do not include VaT

Wages and Taxes

Salaries fall into tax brackets - which means they pay this much each month from their salary

Taxable Income	Tax Rate
$£ 12501$ to $£ 50000$	20%
$£ 50001$ to $£ 150000$	40%
over $£ 150000$	45%

Over time

Time and a haff - means 15 times ther harly rate
Double -2 times their hourly rate

Unit Pricing

4 Oranges £1
5 cupcakes
£1.20

To calculate unit per cost you divide by the cost

Cupcakes are the best value as one item has the cheapest value

There is a directy proportional relationship between the cost and number of units.

When making estimates it is alo useful to use estimates to check if our solution is reasonable.

Use inverse operations to reverse the exchange process

Common Currencies		
Unted Kingoom	$£$	Pounds
Unted States of america	$\$$	Dollars
Europe	$€$	Euros

verf 9 - Rehaching wifl beverix...

Keywords

Parallel: two straight lines that never meet with the same gradient.
Perpendicular: two straight lines that meet at 90°

By the end of this unit you should be able to:

- Identify angles in paraliel lines
- Solve angle problems

What do I need to be able to do?

- Make conjectures with angles
- Make conjectures with shapes

Transversal: a line that crosses at least two other lines.
Sum: the result of adding two or more numbers.
Conjecture: a statement that might be true but is not proven
II Equation: a statement that says two things are equal
II Polygon: a 2 D shape made from straight edges.
II Counterexample: an example that disproves a statement

YEAR 9 - REASONING WITH GEOMETRY... Rotation \& Translation

What do I need to be able to do?
 By the end of this unit you should be able to
 - ldentify the order of rotational symmetry
 - Rotate a shape about a point on the
 shape
 - Rotate a shape about a point not on a shape
 - Translate by a given vector
 - Compare rotations and reflections

Rotational Symmetry

Tracing paper helps check rotational symmetry.

Rotate: a rotation is a circular movement.
Symmetry: when two or more parts are identical after a transformation.
Regular: a regular shape has angles and sides of equal lengths.
Invariant: a point that does not move after a transformation.
Vertex: a point two edges meet.
Horizontal: from side to side
Vertical: from up to down

Keywords

What do I need to be able

 to do？By the end of this unit you should be able to：
－Use square and cube roots
－Identify the hypotenuse
－Calculate the hypotenuse
－Find a missing side in a Right angled triangle
－Use Pythagoras＇theorem on axes
－Explore proofs of Pythagoras＇theorem．

Keywords

Square number：the output of a number mutiplied by itseff
Square root：a value that can be mutiplied by itseff to give a square number
Hypotenuse：the largest side on a right angled triangle．Always opposite the right angle．
Opposite：the side opposite the angle of interest
adjacent：the side next to the angle of interest

Squares and square roots R

If a triangle is right－angled，the sum of the squares of the shorter sides will equal the square of the hypotenuse．

$$
a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
$$

eg $a^{2}+b^{2}=$ hypotenuse 2 $3^{2}+4^{2}=5^{2}$
$9+16=25$
ーーーーー

Calculate the hypotenuse

Hypotenuse
$a^{2}+b^{2}=$ hypotenuse ${ }^{2}$

I Substitute in the

values for a and b
$3^{2}+6^{2}=$ hypotenuse ${ }^{2}$
$9+36=$ hypotenuse 2
$45=$ hypotenuse ${ }^{2}$
2 To find the hypotenuse
square root the sum of the squares of the shorter sides．

Calculate missing sides

（a） 12 cm

$$
a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
$$

$$
12^{2}+b^{2}=15^{2}
$$

I Substitute in the values you are given
$144+b^{2}=225$
-144
Rearrange the equation by subtracting the shorter square from the hypotenuse squared

Square root to
$6.71 \mathrm{~cm}=$ hypotenuse

Substituting the numbers into the theorem shows that this is a right－angled triangle

The hypotenuse is aways the longest side on a triangle because it is opposite the biggest angle．

Pythagoras＇theorem on a coordinate axis

The ine segment is the hypotenuse

$$
a^{2}+b^{2}=\text { hypotenuse }^{2}
$$

The lengths of a and b are the sides of the triangle．

YEAR 9 - REASONING WITH GEOMETRY. Enlargement \& Similarity

Keywords

What do I need to be able to do?

By the end of this unit you should be able to:

- Recognise enlargement and similarity
- Enlarge a shape by a positive SF
- Enlarge a shape from a point
- Enlarge a shape by a fractional SF
- Work out missing sides and angles in a pair of similar shapes.

Similar Shapes: shapes of different sizes that have corresponding sides in equal proportion and identical corresponding angles.
Scale Factor: the muttiple describing how much a shape has been enlarged
Enlarge: to change the size of a shape (enlargement is not always making a shape bigger) Corresponding: objects (or sides) that appear in the same place in two similar situations. Image: the picture or visual representation of the shape

Recognise enlargement ε similarity

Shapes are similar if all pairs of corresponding sides are in the same ratio
These shapes are similar because all sides are increased by the same ratio
\square
Enlargements are similar shapes with a ratio other than I

Enlarge by a positive scale factor
With a scale factor larger than I it makes the shape bigger

Positive fractional scale factor
With a scale factor between 0 and 1 it makes the shape smaller
\square

$$
\xrightarrow{\text { Scale Factor of } \frac{1}{5}}
$$

$$
\underset{\sim}{\text { E }}
$$

12 cm

Enlarge a shape from a point

Scale the distance between the point of enlargement and each corresponding vertices

Mutiply the distance from the centre of corresponding vertices by the scale
factor along the ray

Calculations in similar shapes

Don't forget that properties of shapes don't change with enlargements or in similar shapes

The two trapezium are similar find the missing side and angle

Corresponding sides identify the scale factor

$$
\frac{12}{6}=2
$$

Scale Factor $=\mathbf{2}$

Cakulate the missing side Length (corresponding side) \times scale factor $2 \mathrm{~cm} \times 2$ $x=4 \mathrm{~cm}$

Enlargement does not change angle size
Cakulate the missing angle Corresponding angles remain the same 130°

yeAr 9 - reasonng with geowerry... Solving ratio \& proportion problems

Keywords

What do I need to be able to do?

By the end of this unit you should be able to:

- Solve problems with direct proportion
- Use conversion graphs
- Solve problems with inverse proportion
- Solve ratio problems
- Solve 'best buy' problems

Proportion: a comparison between two numbers
Ratio: a ratio shows the relative size of two variables
Direct proportion: as one variable is mutiplied by a scale factor the other variable is mutiplied by the same scale factor.
Inverse proportion: as one variable is mutiplied by a scale factor the other is divided by the same scale factor
as one variable changes the other changes at the same rate.

This is a multipicative change
4 cans of pop $=£ 2.40$

This muttipler is the same In the same way that this would be for ratio

Sometimes this is easiest if you work out how much one unit is worth first eg 1 can of pop $=£ 0.60$

Conversion Graphs compare two variables

This is always a straight line because as one variable increases so does the other at the same rate

To make conversions between units you need to find the point to compare - then find the associated point by using your graph.
Using a ruler helps for accuracy
Showing your conversion lines help as a "check" for solutions

Inverse Proportion as one variable is mutiplied by a scale factor the other is divided by the same scale factor

Examples of inversely proportional relationships

Time taken to fill a pool and the number of taps running

Time taken to paint a room and the number of workers
T is inversely proportional to G. When $T=2$ then $G=20$

Best Buys Have a directly proportional relationship
To calculate best buys you need to be able to compare the cost of one unit or units of equal amounts

Shop \mathbf{A}
4 cans for $£ 120$
$\downarrow £ 1.20 \div 4 \quad \pm 0.93 \div 3$

Cost per item
I can is $£ 0.3$ Or 30p
| can is $£ 0.31$ | or $31 p$

Shop Ais the best value as it is ip cheaper per can of pop

Shop A

4 cans for $£ 120$

Cost per
pound

YEAR 9 - REASONING WITH GEOMETRY. ̈̈ates

YEAR 9 - REPRESENTATIONS...

Keywords

Probability: the chance that something will happen
Relative Frequency: how often something happens divided by the outcomes
Independent: an event that is not effected by any other events.
Chance: the likelinood of a particular outcome.
Event: the outcome of a probability - a set of possible outcomes.
Biased: a buit in error that makes all values wrong by a certain amount.

independent events

0
1

The rolling of one dice has no impact on the rolling of the other. The individual probabilities should be calculated separately.

Probability of event $1 \times$ Probability of event 2
$\because \because$
$P(5)=\frac{1}{6}$
$P(R)=\frac{1}{4}$

I Find the probability
of getting a 5 and
$P(5$ and $R)=\frac{1}{6} \times \frac{1}{4}=\frac{1}{24}$

The sum of the probabilities is 1

YEAR 9 - REPRESENTATIONS...

 algebraic Representation

 algebraic Representation}
What do I need to be able

 to do?By the end of this unit you should be able to:

- Draw quadratic graphs
- Interpret quadratic graphs
- Interpret other graphs including reciprocals
- Represent inequalities

Quadaticic Grophs

If x^{2} is the highest power in your equation then you have a quadratic graph

It will have a parabola shape

Subsitute the x values into the equation of your line to find the y coordinates

Intersection with the y axis

\boldsymbol{x}	$\mathbf{- 4}$	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$
\boldsymbol{y}	3	0	-1	0	3	8

Coordinate pairs for ploting $(-3,0)$

Plot all of the coordinate pairs and join the points with a curve (freehand) Quadratic graphs are always symmetrical with the turning point in the middle

Interpret other graphs
Cubic Graphs

$$
y=x^{3}+2 x^{2}-2 x+1
$$

Reciprocal graphs never touch
the y axis. This is because x cannot be 0 This is an asymptote

Exponential Graphs

Represent Inequalities

Mutiple methods of representing inequalities
$x<4$
all values are less than 4

The dotted line shows that the inequality does not
The shaded area indicates all possible values of x

Reciprocal Graphs
$y=\frac{1}{x}$

Keywords

Quadratic: a curved graph with the highest power being 2. Square power Inequality: makes a non equal comparison between two numbers
Reciprocal: a reciprocal is 1 divided by the number
Cubic: a curved graph with the highest power being 3. Cubic power
Origin: the coordinate (0,0)
Parabola: a 'u' shaped curve that has mirror symmetry

YEAR 9 －REASONING WITH ALGEBRA．．．

What do I need to be able to do？

By the end of this unit you should be able to：
－Compare gradients
－Compare intercepts
－Understand and use $y=m x+c$
－Find the equation of a line from a graph
－Interpret gradient and intercepts of real－ life graphs

Keywords

Gradient：the steepress of a line

11 intercept：where two ines cross The y－intercept：where the ine meets the y－axis
Paralle：two lines that never meet with the same gradient
Co－ordinate：a set of values that show an exact postion on a graph
I Linear：inear graphs（straight ine）－Inear common difference by addtion／subtraction
II asymptote：a straight ine that a graph will never meet
I Reciprocal：a pair of numbers that multiply together to give I
11 Perpendicular：two ines that meet at a right angle

ニニニニニニニニニニニニニニ」

Lines parallel to the axes

all the points on this line have
a \times coordinate of 10

Pbotingy $=m x+c$ copaphs

Compare Gradients

The coefficient of x（the number in front of x ）tells us the gradient of the line

Find the equation from a graph

The equation of a line can be rearranged： Eg ： $y=c+m x$ $c=y-m x$ Identify which coefficient you are identifying or comparing

The coordinate of a y intercept will always be（ $0, \mathrm{c}$ ）

Lines with the same y－ intercept cross in the same place

The value of c is the point at
－which the line crosses the
axis．Y intercept

In real life graphs like this values will always be positive because they
II measure distances or objects which cannot be negative．
II Direct Proportion graphs To represent direct proportion the graph must start at the origin．

A box of pens costs $£ 2.30$
Complete the table of values to show the cost of buying boxes of pens．

Boxes	0	1	2	3	8
Cost $(£)$		$£ 2.30$			

YEAR 9 - REASONING WITH ALGEBRA. Forming and Solving Equations

Keywords

II Inequality: an inequality compares who values showing if one is greater than, less than or equal to another

What do I need to be able to do?

By the end of this unit you should be able to

- Solve inequalities with negative numbers

I - Solve equations with unknowns on both sides I

- Solve inequalities with unknowns on both sides
I - Substitute into formulae and equations
- Rearrange formulae

Variable: a quantity that may change within the context of the problem
Rearrange: Change the order
Inverse operation the operation that reverses the action
I I Substitute: replace a variable with a numerical value
II Solve: find a numerical value that satisfies an equation

I Solve equations with brackets

1, FFomand solve ineapaties -
$6 x=18$

Inequalities with unknown on both sides

Solving inequalities has the same method as equations

Method I Make x positive first

Method 2 Keep the negative x

When you multiply or divide x by a negative you need to reverse the inequality

Formulae - all expressed in symbols \triangle Equations - include numbers and can be solved

Rearranang Formube (ore step)

x	
y	z

$x=y+z$
Rearrange to make y the subject.
$y=x-z$

Using inverse operations or fact families will guide you through rearranging formulae

Rearranging can also be checked by substitution Language of rearranging...

Make XXX the subject

Rearranging Formulae (two step)

In an equation (find x)
$4 x-3=9$
$+3=+3$
$4 x=12$
$\div 4=3$
$\underline{x}=3^{\div 4}$

In a formula (make x the subject) $x y-s=a$
$x y=a+s$
$\div y \div y$

$$
x=\underline{a+s}
$$

y
\longrightarrow
The steps are the same for solving and rearranging
Rearranging is often needed when using $y=m x+c$
eg Find the gradient of the line $2 y-4 x=9$
Make y the subject first $y=\frac{4 x+9}{2} \quad$ Gradient $=\frac{4}{2}=2$

YEAR 9 - REASONING WITH ALGEBRA... Testing conjectures

Keywords
 I Mutiples: found by mutiplying any number by positive integers
 I Factor: integers that mutiply together to get another number. Prime: an integer with only 2 factors.
 I HCF: highest common factor (biggest factor two or more numbers share)
 I LCM: lowest common multiple (the first time the times table of two or more numbers match) Verify: the process of making sure a solution is correct
 I Proof: logical mathematical arguments used to show the truth of a statement

I Binomial: a polynomial with two terms
Quadratic: a polynomial with four terms (often simpified to three terms)

What do I need to be able

 to do?By the end of this unit you should be able to:
I - Use factors, multiples and primes
I Reason True or Fase

- Reason always, sometimes never true
- Show that reasoning
- Make conjectures about number
- Expand binomials

I Make conjectures with algebra
I - Explore the 100 grid

iFactor, Mutiples and Primes

Mutipication part-whole

all three prime factor trees represent the same decomposition

Common foctors are factors tho or more numbers share

B, Tne or Fakse?
Coniecture

Counterexamples
Conjecture
a pattern that is noticed for many cases

Only one counterexample is needed to disprove a conjecture

Show that

"Conjectures

YEAR 9 - CONSTRUCTING IN 2D/3D.

What do I need to be able to do?

By the end of this unit you should be able to:
I - Name $2 D$ \& 3D shapes
I Recognise Prisms

- Sketch and recognise nets
- Draw plans and elevations
- Find areas of $2 D$ shapes
- Find Surface area for cubes, cuboids, triangular prisms and cyinders
I - Find the volume of 3 D shapes

Keywords

2D: two dimensions to the shape eg length and width
3D: three dimensions to the shape eg length, wioth and height
Vertex: a point where two or more line segments meet
Edge a line on the boundary joining two vertex
Face: a flat surface on a solid object
I Cross-section: a view inside a solid shape made by cutting through it
Plan: a drawing of something when drawn from above (sometimes birds eye view)
I Perspective: a way to give ilustration of a 3D shape when drawn on a flat surface.

Name 2D \& 3D shapes

N $==二=二=$
Nets of cuboids

km grids help to draw accurately

Visualise the folding of the net Will it make the cuboid with all sides touching

1, Sketch and recognise nets
Do they have the same

Where do the edges
section will aso be identical to the end faces.
a cyinder athough with very similar properties does not have flat faces so is not categorised as a prism

Do they have the same
number of faces?

The direction you are considering the shape from determines the front and side views \qquad

area of 2D shapes

Rectangle
Base \times Height \square Triangle $1 / 2 \times$ Base \times Perpendicular height

Parallelogram/Rhombus Base x Perpendicular height

II Surface area se

IIRecognise prisms a sold object with two identical ends

Ore the shapes of th
faces correct?

YEAR 9 - CONSTRUCTING IN 2D/3D... Constructions $\&$ congruency

What do I need to be able to do?

I By the end of this unit you should be able to:
I- Draw and measure angles
I - Construct scale drawings
I - Find locus of distance from points, lines, two lines

- Construct perpendiculars from points, ines, angles
I- Identify congruence
I - Identify congruent triangles

I Draw and measure angles

Locus of a store from a straight in e

Locus equidistant from two points

Keywords

Protractor: piece of equipment used to measure and draw angles
Locus: set of points with a common property
Equidistant: the same distance
Discorectangle: (a stadium) - a rectangle with semi circles at either end
Perpendicular: lines that meet at 90°
arc: part of a curve
Bisector: a line that divides something into two equal parts
Congruent: the same shape and size

I Make sure the cross is at the end
I of the in (where you want the (angle)

I

From the angle vertex draw two arcs that cut the lines forming the angle

Keep the compass the same size and use the new arcs as centres to draw intersecting arcs in the middle

Constructing Triangles $\underset{\text { steps }}{\text { Link to }} \rightarrow \mathbf{R}$
Side, angle, angle
Side, angle, Side

Keep the compass the same
size and draw two arcs from
equidistant from both points

Congruent figures

Congruent figures are identical in size and shape - they can be reflections or rotations of each other

Congruent shapes are identical - all corresponding sides
and angles are the same size

1 Construct a perpendicular from

Correcting the arcs makes the bisector

$$
\text { If } P \text { is a point on the line the steps are the same }
$$

Conovenent trances

Side-side-side

| | all three sides on the triangle are the same size

angle-side-angle

Two angles and the side connecting them are equal in two triangles

Side-angle-side

Two sides and the angle in-between them are equal in It two triandes It will ass mean the third side is the same | size on both shapes)
I Right angle-hypotenuse-side
| | The triangles both have a right angle, the
| | hypotenuse and one side are the same

