When working with statistical diagrams, make sure you look at the scale carefully	$\begin{gathered} \text { Range }=\text { largest data value }- \text { smallest } \\ \text { value } \end{gathered}$
Grouping data is good because it makes the data easier to calculate with and interpret. However, by grouping we lose the original data so our calculations are estimates.	Mode $=$ most common Modal class = group with highest frequency
Median = middle data value when the data is in numerical order	Mean $=$ sum of all data divided by how many pieces of data there are
Interquartile range $=$ upper quartile - lower quartile	The interquartile range is the range of the middle 50% of the data. It is the length of a box on a box plot Interquartile range calculations tend not to include anomalies; for this reason interquartile range is more accurate than range.

When comparing distributions, refer to
An average - such as median or mean
e.g. if boys have higher median exam marks than girls they did better on average

Stem and leaf diagram
Leaves must be in order
There must be a key

When comparing distributions, refer to
The spread of the data; the range or interquartile range

Large range or interquartile range implies less consistency

Mean from a frequency table DIVIDE BY TOTAL FREQUENCY	
$\mathbf{S C O R E}$	FREQUENCY
$\mathbf{0}$	$\mathbf{3}$
$\mathbf{1}$	$\mathbf{2}$
$\mathbf{2}$	$\mathbf{3}$
$\mathbf{3}$	$\mathbf{2}$
Mean score $=$	
$((0 \times 3)+(1 \times 2)+(2 \times 3)+(3 \times 2)) / 10=$	
$14 / 10=1.4$	

On a moving averages graph, the trend line should be a line of best fit of the moving averages.

RELATIVE FREQUENCY is a probability found from experiment.

If the relative frequency of a 5 on a biased dice is 0.2 then after
10 throws you would expect $10 \times 0.2=2$ fives
50 throws you would expect $50 \times 0.2=10$ fives 100 throws you would expect $100 \times 0.2=20$ fives

GOOD SURVEY

1. Keep it simple
2. Use tick boxes
3. Make sure responses cover all possibilities

BAD SURVEY

1.Do not ask leading questions; Don't influence people's decisions
2. Do not ask personal questions
3. Do not include any overlapping responses

On a histogram plot frequency density on y axis where

Frequency density $=$ Frequency Class width

Cumulative frequency means running total.

Frequency

Cumulative frequency
Frequency density
In a histogram, area under bars $=$ frequency.

Total area $=$ total frequency
Work out areas by doing width \mathbf{x} height.

A line of best fit on a scatter diagram must have about the same number of points above and below the line.

It must be a straight line, but it doesn't have to go through the origin.

When plotting a frequency polygon use MID-POINTS

When plotting a cumulative frequency curve use END-POINTS and join with a SMOOTH CURVE.

Systematic sampling is sampling where every $10^{\text {th }}$ or $20^{\text {th }}$ item is surveyed after population displayed in a list with some given order

To be sure that a dice is biased, you must roll the dice enough to be sure that one number is rolled more often than the others.

Using moving averages to find a predicted value

1. Work out the next supposed moving average using a line of best fit
2. See what the next value would have to be to achieve this moving average!

Label all axes on graphs
To write a suitable question, think
Are all responses covered?
Do you need to give a time frame?
Make sure responses don't overlap

Use a ruler to draw straight lines

Pie charts

To find an angle, divide by total frequency and multiply by 360
If easy frequency
e.g. 90 , multiply by 4 to get angle 60 multiply by 6 to get angle

A sample space diagram shows all possible outcomes, e.g. adding the scores of 2 dice

$\boldsymbol{+}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
$\mathbf{6}$	7	8	9	10	11	12

Use this to find probs
e.g. $p(5)=3 / 36=1 / 12$

In probability, if a question asks for who has the most accurate results then it is always the person who has performed more trials

In tree diagrams, Multiply along, add between

In tree diagrams each branch adds up to 1
In tree diagrams final probabilities (the ones you have multiplied to get) add up to 1

When asked to comment on a trend in moving averages, try to comment on a general trend ie general increase or decrease

In probability, if a question asks for who has the most accurate results then it is always the person who has performed more trials	AT LEAST or NONE implies the "1-" rule. For example at least one rainy day means everything but no rainy days so we can do $\mathrm{P}($ at least one rainy day $)=1-\mathrm{P}($ no rainy days)
In tree diagrams, Multiply along, add between	Mutually exclusive events are events which can't happen together
In tree diagrams each branch adds up to 1 In tree diagrams final probabilities (the ones you have multiplied to get) add up to 1	EXAMPLE: You can't get a 1 on a dice and an even number at the same time! $\mathrm{P}(1 \text { and even })=0$

The probabilities of all possible mutually exclusive outcomes of an event add to 1 .

Given a group $0 \leq x<2$
0 is contained within the group as X is greater than or equal to zero 2 is NOT contained as it is less than zero

To find median using a histogram, work out AREA, as this will give you the frequency.
e.g. area $=60$, total frequency $=60$ so median lies at $30^{\text {th }}$ value.
See where this $30^{\text {th }}$ value lies.
Upper quartile $=45^{\text {th }}$ value, lower quartile $=15^{\text {th }}$ value

When working out probabilities for tree diagrams, be careful to check whether the probabilities change or not!!

For example, if you are talking about sweets, you will not return the sweet to the bag!!

2 WAY TABLES

One variable shown by the rows of the table
One variable shown by the columns If the question asks you for a probability of

	First class	Business class	Economy	both or one of or at least one of two things happening, you must draw a TREE
American	6	8	51	DIAGRAM
British	3	5	73	
French	0	4	34	
German	1	3	12	

20. Here are four cumulative frequency diagrams.

Here are four box plots.

For each box plot, write down the letter of the appropriate cumulative frequency diagram.

