When working with statistical diagrams, make sure you look at the scale carefully	Range = largest data value – smallest value
Grouping data is good because it makes the data easier to calculate with and interpret. However, by grouping we lose the original data so our calculations are estimates.	Mode = most common Modal class = group with highest frequency
Median = middle data value when the data is in numerical order	Mean = sum of all data divided by how many pieces of data there are
Interquartile range = upper quartile – lower quartile	The interquartile range is the range of the middle 50% of the data. It is the length of a box on a box plot Interquartile range calculations tend not to include anomalies; for this reason interquartile range is more accurate than range.

Г

When	comp	aring	distrib	outions	, refer	to	When comparing distributions, refer to		
An average – such as median or mean							The spread of the data; the range or interquartile range		
e.g. if	boys ł	nave h	igher	media	n exar	n			
marks	•		-				Large range or interquartile range implies		
	-	51115 (1)	icy un		i on				
average							less consistency		
							Mean from a frequency table		
							DIVIDE BY TOTAL FREQUENCY		
							SCORE FREQUENCY		
Stom	and L	eaf dia	aram				0 3		
SICIII			gram				1 2		
_							2 3		
Leave	es mu	st be in	n orde	er			3 2		
There	e must	t be a l	key				Mean score =		
			•				$((0 \times 3) + (1 \times 2) + (2 \times 3) + (3 \times 2))/10 =$		
							14/10 = 1.4		
To work out a $3 - point$ moving average, work out the average of the first three points, move along one and then work out the average of the next three e.g.							On a moving averages graph, the trend		
5	7	6	2	4	6	8	line should be a line of best fit of the		
	6	5	4	4	6		moving averages.		
The mo				ritten in		dle			
		has used							
Mean from a grouped frequency table USE MIDPOINTS						2			
						hv	RELATIVE FREQUENCY is a probability found from		
Total the midpoint x frequency ; divide by						Uy	experiment.		
GROUP FREQUENCY MIDPOINT MIDPOINT x					MIDP	OINT x	-		
					FREQ	UENCY	If the relative frequency of a 5 on a biased dice is 0.2		
0-2 3-5	5		4		5		then after 10 throws you would expect 10 x $0.2 = 2$ fixes		
6-10	3		8		24		10 throws you would expect $10 \ge 0.2 = 2$ fives 50 throws you would expect $50 \ge 0.2 = 10$ fives		
11-15	3		13	3	39		100 throws you would expect $100 \ge 0.2 = 10$ fives		
TOTAL	. 15				84				
	Μ	EAN =	= 84/1	5 = 5.	6				
							1		

GOOD SURVEY Keep it simple Use tick boxes Make sure responses cover all possibilities 	BAD SURVEY 1.Do not ask leading questions; Don't influence people's decisions 2. Do not ask personal questions 3. Do not include any overlapping responses
To find median on a cumulative frequency, draw a line at halfway up the cumulative frequency and see where it meets the curve. Lower quartile- same but ¹ / ₄ of way up Upper quartile- same but ³ / ₄ of way up	On a histogram plot frequency density on y axis where Frequency density = <u>Frequency</u> Class width
The y axis will always have something relating to frequency on it ie Frequency Cumulative frequency Frequency density	Cumulative frequency means running total.
In a histogram, area under bars = frequency.	A line of best fit on a scatter diagram must have about the same number of points above and below the line. It must be a straight line, but it doesn't have to go through the origin.

A POSITIVE CORRELATION B NO CORRELATION C NEGATIVE CORRELATION D NO CORRELATION	GROUPFREQUENCY $0 \le x < 2$ 9 $2 \le x < 4$ 3 $4 \le x < 6$ 4 $6 \le x < 8$ 4TOTAL20The modal class interval is the one with highestfrequency: $0 \le x < 2$
Lightbub lifetime (hours) Lightbub lifetime (hours) Lower quartile = 210 = value ¼ of way into data. Upper quartile = 240 = value ¾ of way into data. Median = ½ way into data. Interquartile range = upper quartile – lower quartile = 30	In a stem and leaf diagram you must put LEAVES in order and give a key. In this example 1 9 means 19. The mode is 48, the range is highest – lowest = 62 - 19=43 the median (middle value) is halfway between 42 and 43 = 42.5. To find median cross off values from start and finish until you reach the middle. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Random sampling All members of the population must have the same chance of being chosen This can happen by picking names from a hat or by using a list of random numbers.	Stratified sampling is when the population is divided into categories and a number of each category is surveyed in the same proportion as the population The sample is chosen randomly REMEMBER WHOLE NUMBERS
A sample should consider things like the different genders, ages and cultures appropriately.	On a scatter diagram, always draw a line of best fit!

When plotting a frequency polygon use MID-POINTS	When plotting a cumulative frequency curve use END-POINTS and join with a SMOOTH CURVE.
Systematic sampling is sampling where every 10 th or 20 th item is surveyed after population displayed in a list with some given order	To be sure that a dice is biased, you must roll the dice enough to be sure that one number is rolled more often than the others.
 Using moving averages to find a predicted value 1. Work out the next supposed moving average using a line of best fit 2. See what the next value would have to be to achieve this moving average! 	To write a suitable question, think Are all responses covered? Do you need to give a time frame? Make sure responses don't overlap
Label all axes on graphs	Use a ruler to draw straight lines

Pie charts To find an angle, divide by total frequency and multiply by 360 If easy frequency e.g. 90, multiply by 4 to get angle 60 multiply by 6 to get angle A sample space diagram shows all possible							When asked to comment on a trend in moving averages, try to comment on a general trend ie general increase or decrease
		-	$\frac{1}{3}$		-	6 7	If events are independent
2 3 4	3 4 5	4 5 6	5 6 7	6 7 8	7 8 9	8 9 10	they don't affect each other To find probability of both happening, multiply their
5 6 7 8 9 10 11 6 7 8 9 10 11 12 Use this to find probs e.g. $p(5) = 3/36 = 1/12$							probabilities together!!
In probability, if a question asks for who has the most accurate results then it is always the person who has performed more trials							AT LEAST or NONE implies the "1-" rule. For example at least one rainy day means everything but no rainy days so we can do P(at least one rainy day) = 1 - P(no rainy days)
							Mutually exclusive events are events which can't happen together
							EXAMPLE: You can't get a 1 on a dice and an even number at the same time!
In tree diagrams final probabilities (the ones you have multiplied to get) add up to 1						es	P(1 and even) = 0

_	abilities of exclusive o to 1.	-		Given a group 0 <u><</u> x<2 0 is contained within the group as X is greater than or equal to zero 2 is NOT contained as it is less than zero
work out the freque e.g. area = so mediar See where Upper qua	nedian usin AREA, as ency. = 60, total to n lies at 30^{th} e this 30^{th} value 15^{th} value	this will g frequency th value. value lies. ¹ value, lov	ive you = 60	When working out probabilities for tree diagrams, be careful to check whether the probabilities change or not!! For example, if you are talking about sweets, you will not return the sweet to the bag!!
First Business Economy class class 51				If the question asks you for a probability of both or one of or at least one of two things happening, you must draw a TREE DIAGRAM

For each box plot, write down the letter of the appropriate cumulative frequency diagram.

20.