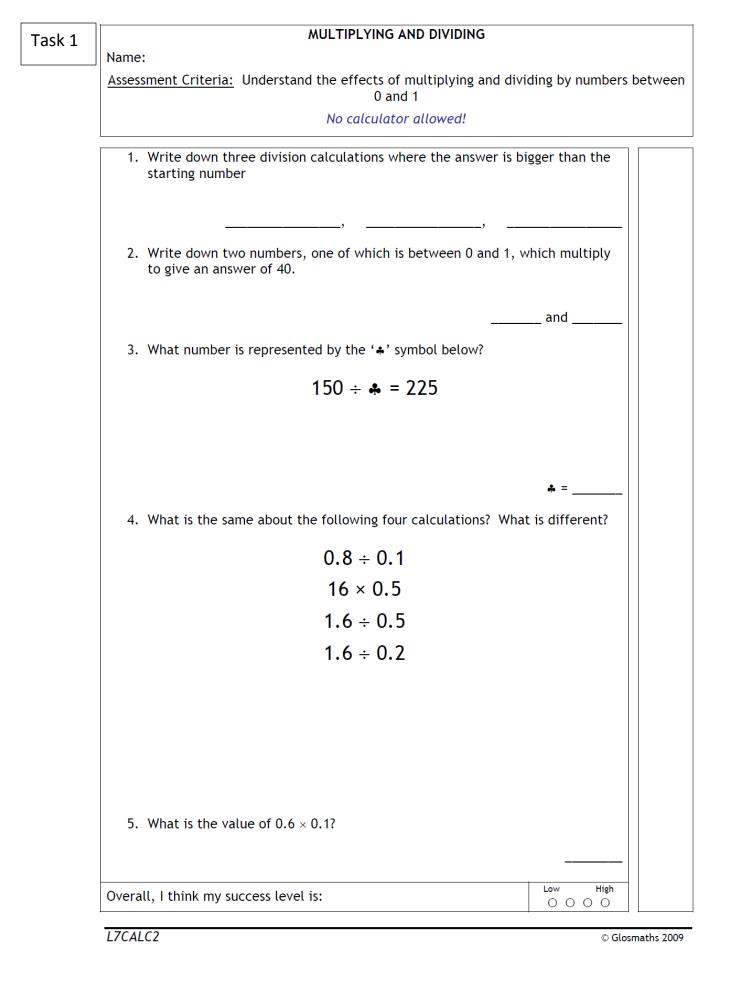
Level 7 Homework booklet 1

NAME _____

TEACHER _____

Task	Торіс	Date	Date	\bigcirc	$\mathbf{\dot{s}}$
		Set	Completed		
1	Multiplying and dividing				
2	Estimating and rounding				
3	Estimating 2				
4	Estimating 3				
5	Use of a Calculator				
6	Mental Questions				
7	Standard Form				
8	Substituting Negative Numbers into Formula				
9	Sequences				
10	Nth term				

After you have completed each homework self-assess your understanding and the date you completed it


My Maths

Please see back cover for **MyMaths** tasks

<u>Parents</u>

Please read note on back cover

retretre

Q	MULTIPLYING AND DIVIDING	٢	8
	I understand the effect of multiplying by a number between 0 and 1		
	I understand the effect of dividing by a number between 0 and 1		
	I can justify generalisations, arguments or solutions		
Ine	eed to practise		

× 2	ESTIMATING AND APPROXIMATING				
	Name: <u>Assessment Criteria:</u> Make and justify estimates and approximations of calculations; estimate calculations by rounding numbers to one significant figure and multiplying and dividing mentally				
	No calculator allowed!				
	1. Find an approximate value of the following calculations: a) $\frac{192.3 \times 87.1}{26.8 \times 20.7}$				
	b) $\frac{2.95 \times 5.1^3}{4.56}$				
	c) $5.92 \times 33 + (2.82 \times 4.8^2)$				
	2. Write down an example of a division calculation, involving decimals, that approximates to 60				
	3. Is the following statement always true, sometimes true or never true: <i>Rounding up the numbers in a calculation will produce an over-estimate</i> Give reasons for your answer				
	Overall, I think my success level is: Low High				

L7CALC4

Q	ESTIMATING AND APPROXIMATING	\odot	\otimes
	I can round numbers to one significant figure		
	I can calculate mentally once values in a complex calculation have been rounded		
	I can identify efficient approaches, such as cancelling common factors, in order to make mental calculations easier		
	I can justify generalisations, arguments or solutions		

1) Which one is correct (a) or (b)

	Question	(a)	(b)
А	4 x 0.8	3.2	5
В	5.1 x 0.07	0.357	72.9
С	360 x 0.5	180	720
D	34 x 0.009	0.306	3777.8
Е	2÷0.4	0.8	5
F	3 ÷ 0.02	0.06	150
G	16÷0.04	400	0.64
Н	23 ÷ 0.8	18.4	2.875
I	<u>500</u> 0.4	200	1250
J	<u>300</u> 0.8	375	240
К	<u>4</u> 1.2 – 0.7	8	2
L	6 x (2.3 – 1.9)	2.4	15
Μ	0.7 x 0.8	0.875	0.56
Ν	<u>8</u> 1.2 – 0.8	3.2	20
0	0.3 x 23	76.7	6.9

2) Which of these are true or false? Give a reason for each answer.

a) 5 x 0.2 = 1

- b) $6 \div 0.4 = 2.4$
- c) 10 x 0.2 = 50


d)
$$40 \div 0.02 = 2000$$

e) $\frac{8}{0.4} = 20$
f) $\frac{7}{1.1 - 0.9} = 1.4$

Task 3 Estimating 2 1)

Lara worked this out on her calculator.

 $\frac{19.8 \times 3.9}{19.8 - 3.9}$

This is what her calculator showed.

Write down a calculation Lara could do in her head to check whether her answer is correct.

2)

Estimate.

$$\frac{\sqrt{26} \times 1.84}{0.48}$$

3)

Estimate the answer to this calculation. Show clearly the values you use.

$$\frac{\sqrt{143\cdot7}}{0\cdot49}$$

4)

Estimate the answer to this calculation. Show clearly the values you use.

 $\frac{19.7 \times 7.9}{0.48}$

5)

Jim has done this calculation. His answer is wrong. Estimating and checking solutions

Explain how you can tell the answer is wrong without working it out exactly.

 $58\,900 \div 62 = 95$

6)

Estimate the answer to this calculation. Show clearly the values you use.

 $\frac{9 \cdot 6^2}{0 \cdot 47}$

7)

Estimate the answer to this calculation. Show clearly the values you use.

> √143·7 0·49

8)

Two of these calculations are wrong.

Which two are wrong?

Explain how you can tell that they are wrong without doing the calculation.

- (a) $15 \times 1.7 = 25.5$ (b) $0.6 \times 12 = 21$
- (c) $27 \div 45 = 0.6$ (d) $25 \div 18 = 0.8$

Name :

2

Task 4 Estimating (3) exam questions

State whether or not this calculation is correct.

$$18.2 \div 0.91 = 200$$

Show how you decided.

2)

1)

The answers to these calculations are wrong. Explain why the answers are wrong. Do **not** do the full calculation.

(a) $23.4 \times 1.1 = 22.74$

.....[1]

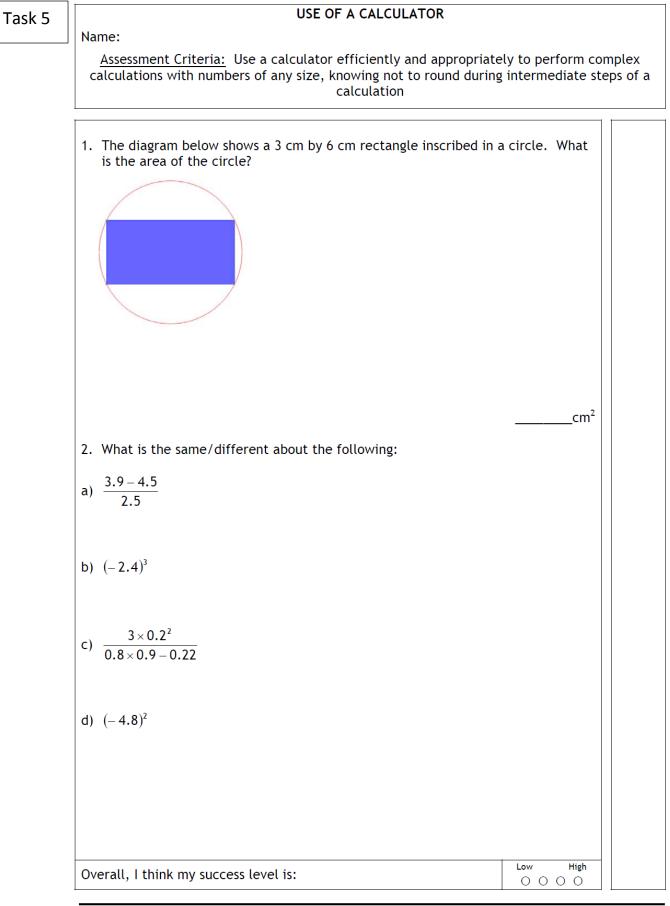
(b) $\frac{54 \cdot 6}{0 \cdot 4} = 21 \cdot 84$

......[1]

3)

Sam and Michael were comparing their mathematics homework. They had different answers to one of the questions.

$$\begin{array}{c}
\frac{2 \cdot 31}{1 \cdot 1 - 0 \cdot 4} = 3 \cdot 3 \\
\end{array}$$
Sam's work
$$\begin{array}{c}
\frac{2 \cdot 31}{1 \cdot 1 - 0 \cdot 4} = 1 \cdot 7 \\
\end{array}$$
Michael's work

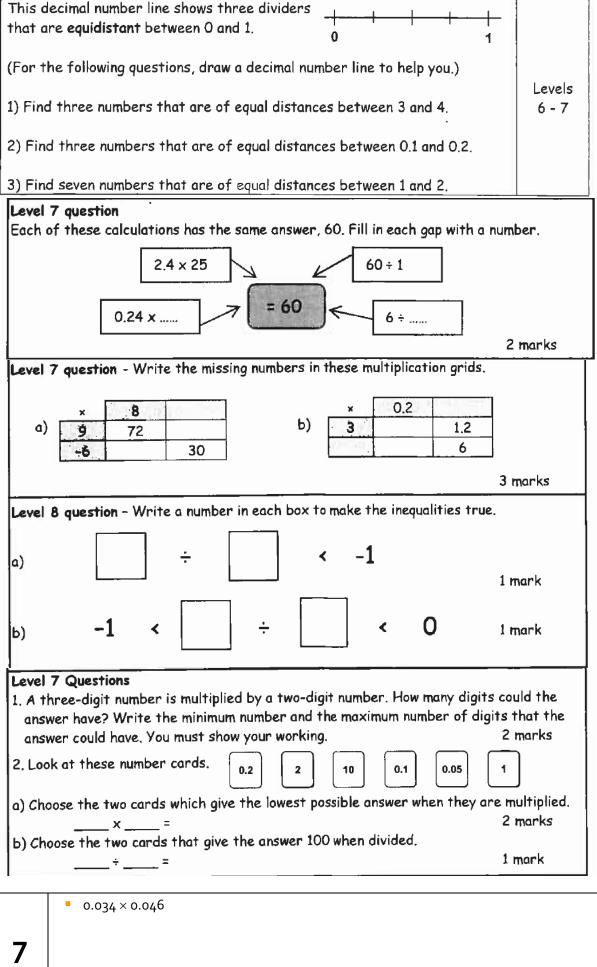

Explain how you can tell which one is wrong without doing the full calculation.

4)

State whether or not this calculation is correct.

 $18.2 \div 0.91 = 200$

Show how you decided.



L7CALC5

© Glosmaths 2009

Q	USE OF A CALCULATOR	\odot	8
	I can use my calculator to carry out calculations involving π		
	I can use my calculator to carry out calculations involving brackets		
	I can use my calculator to carry out calculations involving powers		
	I can use my calculator to carry out calculations written as a fraction		
	I can use my calculator to carry out calculations involving combinations of these things		
	I know when it is appropriate to round when carrying out a complex calculation		
	I can justify generalisations, arguments or solutions		
ne	eed to practise		
ne	eed to practise		

Task 6 Mental Questions

Task 7 Standard Form

1. Write these in standard form

3000000	=
40000	=
523000	=
254100000	=
1829000000	=
102320000000000	=
143.2	=

2. Write these as normal numbers

6 x 10′	=	
3 x 10 ⁹	=	
6.2 x 10⁵	=	
7.12 x 10 ⁸	=	
4.356 x 10 ¹²	=	
1.234 x 10 ⁶	=	
3.245 x 10 ²	=	

3) Write these as normal numbers

а	6 x 10 ⁻⁷
b	3 x 10 ⁻¹⁰
С	4 x 10 ⁻¹¹
d	7 x 10 ⁻¹
e	3.664 x 10 ⁻¹⁵
f	3.93 x 10 ⁻¹⁷
g	4.609 x 10 ⁻¹³
h	4.966 x 10 ⁻³
i	3.88543 x 10 ⁻²
j	3.05 x 10 ⁻⁷

4) Write these in standard form

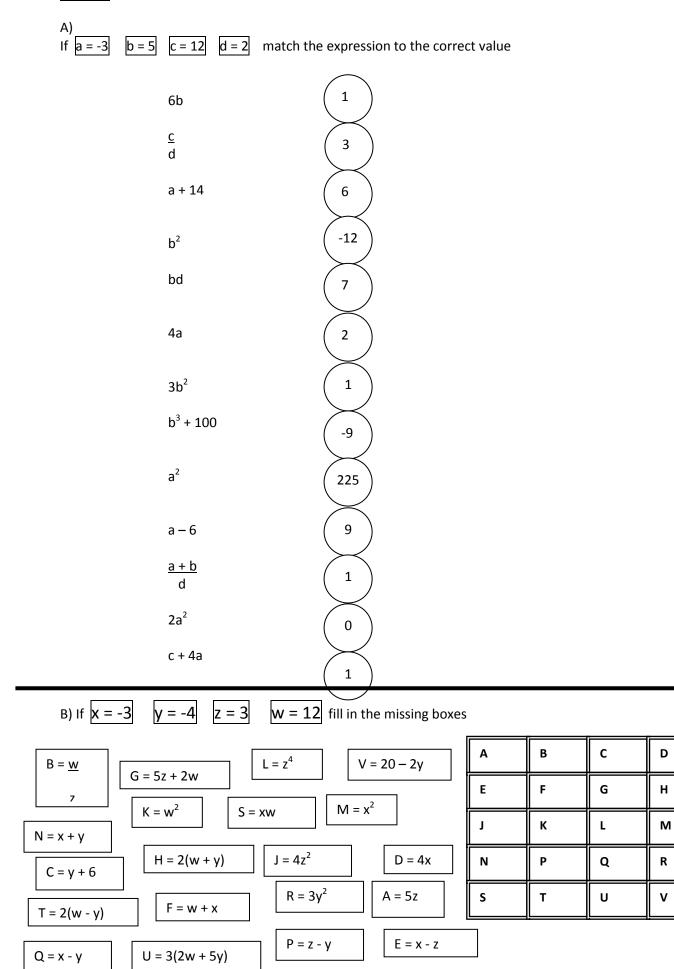
- **a** 0.09
- **b** 0.000000000008
- **c** 0.0000000004
- **d** 0.00000000000000006
- e 0.000000006699
- f 0.00000594
- g 0.000000000000000003055
- **h** 0.0000000145
- i 0.000000872
- j 0.0000986

5) The earliest dinosaurs existed on earth 2.05 $\times 10^{8}$ years ago.

Dinosaurs became extinct 6.5×10^7 years ago. For how long did dinosaurs exist on earth?

6)

The distance between the Moon and the Earth is 384 400 km.

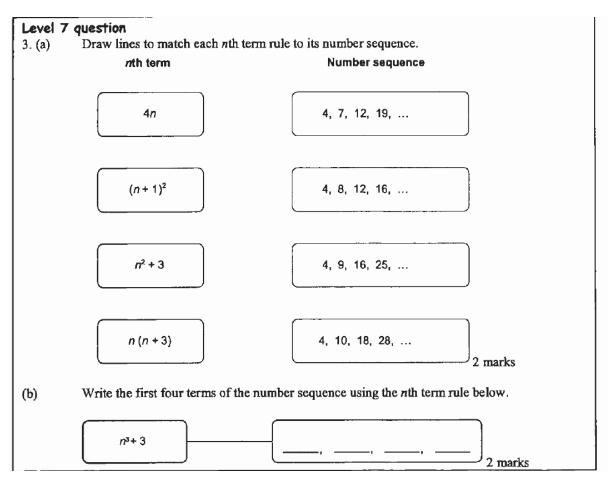

(a) Write this distance in standard form.

(b) A total eclipse of the Sun occurred in August 1999 when the Earth, the Moon and the Sun were in a straight line.

			NOT TO
			SCALE
•	•	•	
Earth	Moon	Sun	

The distance between the Earth and the Sun is 1.496×10^8 km. Find the distance between the Moon and the Sun at the time of the eclipse. Give your answer in standard form.

Task 8 Substituting negative values in formula



Task 11	SEQUENCES Name:			
	<u>Assessment Criteria:</u> Find the next term and n th term of quadratic sequences and functions and explore their properties			
	1. Find the first three terms of the sequence with an n^{th} term of $T(n) = 2n^2 - 7$			
	2. Find the n th term of each of these sequences: a) -3, 0, 5, 12, 21,			
	b) $\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \frac{1}{30}, \dots$			
	T(n) = 3. Find a way to continue a sequence starting 1, 2, so that it has a quadratic n th term. Explain your answer.			
	 4. Decide whether each of the following statements is always true, sometimes true, or never true. Explain your answer in each case. a) Sequences with an equivalent second difference have a quadratic nth term 			
	L7ALG5 © Glosmaths 2009			

b) Sequences with an unequal first difference pattern have a qua term	adratic n th
c) The second difference for a quadratic sequence is always 2	
Overall, I think my success level is:	Low High

Q	SEQUENCES	\odot	8
	I can find the terms of a quadratic sequence given its n th term		
	I can find the n th term of a quadratic sequence		
	I can find the n th term of a sequence that is connected to a quadratic rule		
	I know some of the properties of quadratic sequences		
	I can justify generalisations, arguments or solutions		

Task 12 nth Term

Level 8 question - Each pattern below shows a square grid that is 2 squares high. Only one square at each end of the top row is shaded. All squares in the bottom row are shaded. Imagine one of these patterns that has n squares in the bottom row. Write an expression for the fraction of the pattern that is shaded. 2 marks

	 Find the nth term for the following sequence: 2×3, 3×4, 4×5, 5×6,
7	• Find the n th term for the following sequence: $\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \frac{1}{30}, \dots$

MyMaths : Here are the MyMaths tasks for level 7.

Your teacher will instruct which of these to do.

Username : thekingswood

Password : primes

Alternatively can use MyMaths to help with topics you are unsure of and to revise topics.

BOOSTER PACKS

		%			
Торіс	How to find : Go to Boosters then	Scored	Self Assessment		
Arithmetic	Ds to C's (Booster Pack)		\odot		\odot
Number and Powers	Ds to C's (Booster Pack)		\odot		\odot
Decimals	Ds to C's (Booster Pack)		\odot		3
Sequences, Formula	Ds to C's (Booster Pack)		\odot		3
Coordinates, Graphs	Ds to C's (Booster Pack)		0		3

OTHER

		%						
Торіс	How to find : Go to Library then	Scored	Self Assessment			Self Assessment		
Significant Figures	Number \rightarrow Estimation and Accuracy		\odot		$\overline{\otimes}$			
Estimating Calculations	Number \rightarrow Estimation and Accuracy		\odot		\otimes			
Upper and Lower Bounds 1	Number \rightarrow Estimation and Accuracy		\odot		\otimes			
Indices 1	Number \rightarrow Powers and roots		\odot		\otimes			
Equation of a Line 2	Number → Graphs		\odot		\otimes			
Quadratic Sequences	Number \rightarrow Sequences		\odot		$\overline{\mathbf{i}}$			

Parent note about this booklet

This booklet contains several level tasks available for homework along with MyMaths tasks. The teacher will instruct which level tasks students should complete each week.

Students can do extra MyMaths tasks not set by the teacher at any time It is not intended that the whole booklet should be completed as one homework.

The booklet must be kept safely and any lost booklets will require £1 for a new copy.